题目描述
200. 岛屿数量
给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
1 2 3 4 5 6 7
| **输入:**grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] **输出:**1
|
示例 2:
1 2 3 4 5 6 7
| **输入:**grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] **输出:**3
|
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
的值为 '0'
或 '1'
深搜
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| class Solution { char[][] grid; int[][] vis; int count; int[] dy; int[] dx; public int numIslands(char[][] grid) { dx=new int[]{-1,1,0,0}; dy=new int[]{0,0,-1,1}; vis = new int[grid.length][grid[0].length]; this.grid=grid; for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (vis[i][j] == 0 && grid[i][j] == '1') { dfs(i,j); count++; } } } return count;
}
void dfs(int x, int y) { if(x<0||y<0||x>=grid.length||y>=grid[0].length){ return; } if(vis[x][y]==1){ return; } vis[x][y] = 1; if (grid[x][y] == '0') { return; } for (int i = 0; i < 4; i++) { dfs(x + dx[i], y + dy[i]); } } }
|
广搜
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| class Solution { int[][] vis; Deque<Pair<Integer, Integer>> que; int[] dx = { 1, -1, 0, 0 }; int[] dy = { 0, 0, 1, -1 };
public int numIslands(char[][] grid) {
vis = new int[grid.length][grid[0].length]; que = new LinkedList<>(); int num = 0; for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (vis[i][j] == 0 && grid[i][j] == '1') { bfs(i, j, que,grid); num++; } } } return num; }
void bfs(int x, int y, Deque<Pair<Integer, Integer>> que,char[][] grid) {
Pair<Integer, Integer> pair = new Pair<>(x, y); que.push(new Pair<>(x, y)); vis[x][y] = 1; while (!que.isEmpty()) { pair = que.poll(); int nX = pair.getKey(); int nY = pair.getValue();
for (int i = 0; i < 4; i++) { int adjX = nX + dx[i]; int adjY = nY + dy[i]; if (adjX >= 0 && adjX < vis.length && adjY >= 0 && adjY < vis[0].length && vis[adjX][adjY] == 0 && grid[adjX][adjY] == '1') { que.add(new Pair<>(adjX, adjY)); vis[adjX][adjY] = 1; } }
} } }
|